Global Alliance Powerfuels

Creating a Hydrogen Market based on Sustainable Trade

Annual Conference – Financing Powerfuels Pathways Virtual, 09 September 2020

Aram Sander, Head of International Business Development, ENERTRAG AG

Aram Sander

Relevant Experience

- Extensive experience in management along the entire life cycle of wind energy projects from cradle to operation and in different markets covering development, EPC contracting, component production, financing, M&A
- Development of extended business models for renewable energy power plants (storage, hydrogen, e-mobility, extended grid services)

Professional Background

• 2020 – today: **Head of International Business Development** at ENERTRAG, developing foreign activities in the areas of wind, solar and green hydrogen production

- 2015 2020: **Director of ENERCON Uruguay S.A.**, Leading ENERCON's business in Uruguay, South America. Cradle-to-sale realization of 150 MW wind farms including local production.
- 2013 2015: Coordinator for International Special Projects to the board of ENERCON, Aurich, Germany.
- 2008 2011: Project Assistant at FIRSTCLIMATE, development of carbon neutral products, based on Kyoto project CO₂ emission trading.

ENERCON ENERGIE FÜR DIE WELT

Education

• Dipl.-Ing., Studies of Industrial Engineering and Management (Wirtschaftsingenieurwesen) at Technische Universität Berlin

ENERTRAG is an Innovative Renewables Utility

ENERTRAG in 2020

- 1,500 MW wind implemented
- €2 billion debt / equity raised
- 750 MW wind on balance sheet
- 6,000 MW renewables in Germany, France, South Africa in remote control
- 2 TWh annual electricity production/sales
- €300 million revenues from electricity sales and project business
- 680 employees in Germany, France, Poland, South Africa, Vietnam, Ghana

ENERTRAG's integrated power plant in Germany, North of Berlin

Long Term Hydrogen Demand Growing Strongly

Growth in World's Pure H2 Demand

Source: iea (2019), Hydrogen Council (2017)

Key Implications

Substantial increase in H2 demand to 2030 and accelerated to 2050

- · Refinery demand declining
- Fertiliser demand raising, especially with population growth
- But main driver are <u>new demands</u> to decarbonize sectors such as transport (heavy-duty, shipping, aviation), steelmaking, industrial energy use, building heat and power

Therefore: Huge <u>new</u> investments in hydrogen production necessary

- Green hydrogen projects will compete against grey (and blue) hydrogen projects on greenfield level
- Competition based almost on pure CAPEX

In Greenfield Setting, Green Hydrogen Close to Competitiveness

Sustainability Criteria Important for Long-term Acceptance

Sources of Energy and Carbon

Renewable Energy Source Carbon Source Carbon Source Sustainable OR Truly Unavoidable (biomass, direct-air capture) (e.g. cement)

Application

Power Fuel free of carbon wherever possible

H2-based fuels whenever more direct use of wind/solar not possible

Efficient Implementation and Tradability Important for Quick Uptake

Market-Based Auction Systems (e.g. CfD)

CfD optimizes risk allocation, which leads to

- Project-financeability
- Optimal allocation of capital from a risk/return perspective (low-return debt into low-risk-part of the project)

Long-term off-take leads to

- Long-term commitment of all participants
- Establishment of trade markets/routes
- Establishment of local industries
- Deployment of high-quality technology

Physical vs. Contractual Delivery

Physical:

- High logistic costs if physical delivery is enforced, as parallel logistics to existing one (e.g. ammonia)
- Could be a starting point to give comfort to all participants

Contractual:

- Separates product (e.g. ammonia, aviation fuel) from green property
- Based on tradable certificates for the green property of the green hydrogen and its derivatives
- Reduces inefficiencies and leads to a liquid market quickly

Power Fuel pilot production in South Africa

ENERTRAG with (local) partners is developing a sustainable aviation fuel (SAF) project in South Africa

Sasol has vast experience in creation of synthetic liquid fuels (8-10 million t/a)

Supply of green hydrogen and biomass into existing plant to produce SAF

Planned installed capacities

Electrolysers: 150-200 MW

Wind and solar: 350-450 MW

Planned production volumes

Green hydrogen: 15,000 t/a

• Biomass: 115,000 t/a

• Aviation fuel: 60,000 t/a (approx. enough for two planes to fly daily from Johannesburg to Europe)

Renewable electricity ENERTRAG (870 GWh/a) CO₂ 60 GWh/a curtailed (island mode) navitas Carbon Dioxide (185,000 t/a) Oxygen (120,000 t/a) 810 GWh/a Green 150 - 200 MW Wind hydrogen (450 GWh/a) 15.000 t/a Electrolyser Water Gas 200 - 250 MW Solar PV Shift Reactor (420 GWh/a) Water (160,000 t/a) Fischer Tropsch Reactor Oxygen (45,000 t/a) Biomass Carbon Monoxide (120,000 t/a) Gasification Hydrogen (3,000 t/a) Water (75,000 t/a) Biomass (115,000 t/a)

Green hydrogen & biomass project in advanced planning/permitting stage. Commercial operation possible as early as 2023/24.

Together "one energy ahead"!

Aram Sander
Head of International Business Development
ENERTRAG AG
Cell: +49 152 049 52 113
Aram.Sander@enertrag.com